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Motivation

e Various applications in human-computer interaction,
augmented reality and driving analysis ...

e Widely used commercial depth sensors.

e Hot research topic.

Goal Given a depth image of human hand, estimate accurate 3D
joint locations.



Generative Approaches

Model-based, synthesize and optimize.
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e [Oikonomidis et al., 2011]

o [Makris et al., 2015] e Could be highly accurate
* [Qian et al., 2014] e Guaranteed to be valid

® [Tagliasacchi et al., 2015]
e [Sharp et al., 2015]

e Slow



Discriminative Approaches

Learning-based, learn a direct regression function.
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Random Forest Regressor
e Much more efficient

e [Keskin et al., 2012]
® [Tang et al., 2013]
[Xu and Cheng, 2013]

[Sun et al., 2015]
[Li et al., 2015] e Violate hand geometry

CNN Regressor
e [Oberweger et al., 2015a]

e Results are coarse




Hybrid Approaches

Use discriminative method for initialization, and model-based
refinement.

e [Tompson et al., 2014]

e [Oberweger et al., 2015b]

e [Dong et al., 2015]
[Sridhar et al., 2015]



Model-based Deep Hand Pose Estimation
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e We designed a novel layer in deep learning that realized the
non-linear forward kinematic mapping from joint angles to
joint locations.

e We add a physical constraint as a multi-task loss in the
objective function to ensure physical validity.



Hand Model

A hand model is a map from hand pose
parameters © to 3D joint locations Y

o F:RP - RI*3

D = 26: The DOF of human hand
J = 23: The number of key joints
Y = F(©)
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Forward Kinematics

P = ( H Rotg,(0;) x Transs,(6))[0,0,0,1]"
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Deep Learning with a Hand Model Layer

8 dalk

Convolutional Layers Fully Connected Layers

Joint location loss:
1 2
Lir(©) = S1l7(8) = Y|
Physical constraint loss:

Lphy (© Z[max — 60;,0) + max(6; — 6;,0)].

Overall loss:
L(@) = jt(@) + )\Lphy(@)



Self-Comparison
NYU Hand Pose Dataset:

® Accurate joint locations annotation.

® \We use an off-line model fitting to obtain angles ground truth.

Baselines:
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® direct joint regression

® direct parameter regression
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® without physical constraint
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Self-Comparison(Results)

Metrics Joint error Angle error
Methods
direct joint 17.2mm 21.4°
direct parameter 26.7mm 12.2°
ours w/o phy 16.9mm 12.0
ours 16.9mm 12.2°

Results:

Mean error(degree)

T direct joint B ours w/o phy
= direct parameter  EEE ours
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e Direct joint is hard to be fitted in a model.

e Direct parameter has large joint error.

e Ours w/o phy is the best, but there are 18.6% frames have

out-of-range angles.

e Physical constraint reduces invalid frames to 0.9%.



Comparison with the State-of-the-art
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Conclusion

e End-to-end learning using the non-linear forward kinematics
layer in a deep neutral network is feasible for hand pose
estimation.

e Adding an additional regularization loss on the intermediate
pose representation is important for pose validity.

e Exploit the prior knowledge in learning process.



Q&A

Code is available at
https://github.com/tenstep/DeepModel

{zhouxy13, gfwan13, weizh, xyxue}@fudan.edu.cn
yichenw@microsoft.com
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